Experimental taphonomy of Artemia reveals the role of endogenous microbes in mediating decay and fossilization

نویسندگان

  • Aodhán D Butler
  • John A Cunningham
  • Graham E Budd
  • Philip C J Donoghue
چکیده

Exceptionally preserved fossils provide major insights into the evolutionary history of life. Microbial activity is thought to play a pivotal role in both the decay of organisms and the preservation of soft tissue in the fossil record, though this has been the subject of very little experimental investigation. To remedy this, we undertook an experimental study of the decay of the brine shrimp Artemia, examining the roles of autolysis, microbial activity, oxygen diffusion and reducing conditions. Our findings indicate that endogenous gut bacteria are the main factor controlling decay. Following gut wall rupture, but prior to cuticle failure, gut-derived microbes spread into the body cavity, consuming tissues and forming biofilms capable of mediating authigenic mineralization, that pseudomorph tissues and structures such as limbs and the haemocoel. These observations explain patterns observed in exceptionally preserved fossil arthropods. For example, guts are preserved relatively frequently, while preservation of other internal anatomy is rare. They also suggest that gut-derived microbes play a key role in the preservation of internal anatomy and that differential preservation between exceptional deposits might be because of factors that control autolysis and microbial activity. The findings also suggest that the evolution of a through gut and its bacterial microflora increased the potential for exceptional fossil preservation in bilaterians, providing one explanation for the extreme rarity of internal preservation in those animals that lack a through gut.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of microbial mats in early fossilization by decay delay and formation of impressions and replicas of vertebrates and invertebrates.

Microbial mats have been hypothesized to improve the persistence and the preservation of organic remains during fossilization processes. We test this hypothesis with long-term experiments (up to 5.5 years) using invertebrate and vertebrate corpses. Once placed on mats, the microbial community coats the corpses and forms a three-dimensional sarcophagus composed of microbial cells and exopolymeri...

متن کامل

Experimental Decay of Soft Tissues !

—The exceptionally preserved fossil record of soft tissues sheds light on a wide range of evolutionary episodes from across geological history. Understanding how soft tissues become hard fossils is not a trivial process. A powerful tool in this context is experimentally derived decay data. By studying decay in a laboratory setting and on a laboratory timescale, an understanding of the processes...

متن کامل

Deciphering the fossil record of early bilaterian embryonic development in light of experimental taphonomy.

Experimental analyses of decay in a tunicate deuterostome and three lophotrochozoans indicate that the controls on decay and preservation of embryos, identified previously based on echinoids, are more generally applicable. Four stages of decay are identified regardless of the environment of death and decay. Embryos decay rapidly in oxic and anoxic conditions, although the gross morphology of em...

متن کامل

The Mediating Role of Self-efficacy in the Relationship between Quality of Life and Emotional Maturity with a Desire for Childbearing

Introduction: The population decline in our country is a worrying process, as fertility rates have dropped significantly in recent years. In the meantime, some factors appear to influence women's low tendency to adopt children. Therefore, the present study aimed to determine the mediating role of self-efficacy in the relationship between quality of life and emotional maturity with a tendency to...

متن کامل

Experimental taphonomy of giant sulphur bacteria: implications for the interpretation of the embryo-like Ediacaran Doushantuo fossils.

The Ediacaran Doushantuo biota has yielded fossils interpreted as eukaryotic organisms, either animal embryos or eukaryotes basal or distantly related to Metazoa. However, the fossils have been interpreted alternatively as giant sulphur bacteria similar to the extant Thiomargarita. To test this hypothesis, living and decayed Thiomargarita were compared with Doushantuo fossils and experimental t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 282  شماره 

صفحات  -

تاریخ انتشار 2015